Semi-supervised cross-entropy clustering with information bottleneck constraint
نویسندگان
چکیده
منابع مشابه
Semi-supervised cross-entropy clustering with information bottleneck constraint
In this paper, we propose a semi-supervised clustering method, CECIB, that models data with a set of Gaussian distributions and that retrieves clusters based on a partial labeling provided by the user (partition-level side information). By combining the ideas from cross-entropy clustering (CEC) with those from the information bottleneck method (IB), our method trades between three conflicting g...
متن کاملConstraint Selection for Semi-supervised Topological Clustering
In this paper, we propose to adapt the batch version of selforganizing map (SOM) to background information in clustering task. It deals with constrained clustering with SOM in a deterministic paradigm. In this context we adapt the appropriate topological clustering to pairwise instance level constraints with the study of their informativeness and coherence properties for measuring their utility...
متن کاملSemi-Supervised Clustering with Partial Background Information
Incorporating background knowledge into unsupervised clustering algorithms has been the subject of extensive research in recent years. Nevertheless, existing algorithms implicitly assume that the background information, typically specified in the form of labeled examples or pairwise constraints, has the same feature space as the unlabeled data to be clustered. In this paper, we are concerned wi...
متن کاملSemi-supervised information-maximization clustering
Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the information-maximization principle. The proposed method is an extension of a previous unsupervised information-maximization clustering algorithm based on squared-loss mutual information to effectively ...
متن کاملSemi-supervised Clustering on Heterogeneous Information Networks
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2017
ISSN: 0020-0255
DOI: 10.1016/j.ins.2017.07.016