Semi-supervised cross-entropy clustering with information bottleneck constraint

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised cross-entropy clustering with information bottleneck constraint

In this paper, we propose a semi-supervised clustering method, CECIB, that models data with a set of Gaussian distributions and that retrieves clusters based on a partial labeling provided by the user (partition-level side information). By combining the ideas from cross-entropy clustering (CEC) with those from the information bottleneck method (IB), our method trades between three conflicting g...

متن کامل

Constraint Selection for Semi-supervised Topological Clustering

In this paper, we propose to adapt the batch version of selforganizing map (SOM) to background information in clustering task. It deals with constrained clustering with SOM in a deterministic paradigm. In this context we adapt the appropriate topological clustering to pairwise instance level constraints with the study of their informativeness and coherence properties for measuring their utility...

متن کامل

Semi-Supervised Clustering with Partial Background Information

Incorporating background knowledge into unsupervised clustering algorithms has been the subject of extensive research in recent years. Nevertheless, existing algorithms implicitly assume that the background information, typically specified in the form of labeled examples or pairwise constraints, has the same feature space as the unlabeled data to be clustered. In this paper, we are concerned wi...

متن کامل

Semi-supervised information-maximization clustering

Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the information-maximization principle. The proposed method is an extension of a previous unsupervised information-maximization clustering algorithm based on squared-loss mutual information to effectively ...

متن کامل

Semi-supervised Clustering on Heterogeneous Information Networks

Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2017

ISSN: 0020-0255

DOI: 10.1016/j.ins.2017.07.016